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SECOND PUBLIC EXAMINATION

Honour School of Physics Part C: 4 Year Course

Honour School of Physics and Philosophy Part C

C6: THEORETICAL PHYSICS

TRINITY TERM 2011

Friday, 17 June, 9.30 am – 12.30 pm

Answer four questions.

Start the answer to each question in a fresh book.

A list of physical constants and conversion factors accompanies this paper.

The numbers in the margin indicate the weight that the Examiners anticipate
assigning to each part of the question.

Do NOT turn over until told that you may do so.
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1. A small particle suspended in fluid is free to rotate about one axis. Its rotation
angle θ(t) changes with time t at a rate ω(t). The time evolution of this rate is described
by the Langevin equation

dω(t)
dt

= −γω(t) + η(t) ,

where η(t) fluctuates randomly in time with average values 〈η(t)〉 = 0 and 〈η(t1)η(t2)〉 =
Γδ(t1 − t2). Explain the physical origin of the two terms on the right-hand side of this
equation and discuss the circumstances under which the assumed form for 〈η(t1)η(t2)〉
is appropriate. [6]

The particle is stationary with rotation angle zero at t = 0. Derive an expression
for the rotation rate at subsequent times in terms of η(t) and show that

〈ω(t1)ω(t2)〉 =
Γ
2γ

[
e−γ|t1−t2| − e−γ(t1+t2)

]

for t1, t2 ≥ 0. Describe how this result enables one to relate the values of Γ and γ to
the temperature and the moment of inertia of the particle. [10]

Using the definition

θ(t) =
∫ t

0
dt′ω(t′)

calculate 〈θ(t)〉 and show that

〈θ2(t)〉 =
Γ
γ2

[
t +

1
2γ

(1− e−2γt)− 2
γ

(1− e−γt)
]

.

Discuss the behaviour of 〈θ2(t)〉 for γt ¿ 1 and γt À 1. On what timescale does the
orientation of the molecule become roughly uniformly distributed? [9]
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2. A model for a one-dimensional system in classical statistical mechanics has vari-
ables ni located at the sites of a lattice, which are labelled by integers i. The variables
have S possible values, so that ni = 0, 1 . . . S − 1. The lattice has N sites and peri-
odic boundary conditions, so that i + N ≡ i. The system has an interaction energy
E(ni, ni+1) between neighbouring sites and the total energy of a configuration is

H =
N−1∑

i=0

E(ni, ni+1) .

A physical observable is represented by the function c(ni). Discuss how the transfer
matrix approach may be used to calculate the free energy per site and the thermal
averages 〈c(nl)〉 and 〈c(nl)c(nl+m)〉 for large N . [12]

For a lattice gas S = 2 and

E(ni, ni+1) = −Jnini+1 − µ

2
(ni + ni+1) .

Explain the physical significance of the constants J and µ. [4]

Show that
〈ni〉 =

1
1 + e−2θ

where
sinh θ =

1
2

(
eβ(J+µ/2) − e−βµ/2

)
.

Sketch the dependence of 〈ni〉 on µ at fixed inverse temperature β, (i) for 0 ≤ βJ ¿ 1,
and (ii) for βJ À 1. How would you expect these graphs to differ for a similar model
in higher dimensions? [9]
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3. The group SU(3) is defined as the set of complex 3 × 3 matrices U satisfying
U †U = 1 and det(U) = 1.

(a) Show that the Lie algebra of SU(3) consists of traceless, hermitian 3×3 matrices.
What is the real dimension of this Lie algebra? [6]

(b) A triplet φ = (φ1, φ2, φ3)T of complex scalar fields transforms under the funda-
mental SU(3) representation. Show that the Lagrangian density

L = ∂µφ†∂µφ− V (φ) , V (φ) = m2φ†φ +
λ

4
(φ†φ)2 ,

where m and λ are constants, is SU(3) invariant. [4]

(c) Assume that m2 < 0 and analyse spontaneous symmetry breaking for the theory
given in (b). Choose a convenient vacuum state and find the unbroken symmetry
group. How many Goldstone bosons do you expect from Goldstone’s theorem in
this case? [7]

(d) Verify Goldstone’s theorem by explicitly working out the masses around the
vacuum chosen in (c). [8]

4. The Lagrangian density for a classical vector field Aµ with field strength Fµν =
∂µAν − ∂νAµ is given by

L = −1
4
FµνF

µν .

(a) Derive the equation of motion for the vector field Aµ from this Lagrangian density.
Show that in Lorentz gauge, defined by ∂µAµ = 0, it takes the form ¤Aµ = 0. [4]

(b) Consider the plane wave ansatz Aµ(x) = cµ sin(kx) where cµ and kµ are constant
four-vectors. Under which conditions is this ansatz in Lorentz gauge and a solution
to ¤Aµ = 0? [6]

(c) Apply a gauge transformation with parameter Λ = −λ cos(kx), where λ is a
constant, to the plane wave solution in (b) and show that it results in cµ →
cµ + λkµ. What is the interpretation of this gauge transformation? For a given
four-momentum k, state how many physical degrees of freedom are contained in
cµ and justify your answer. [7]

(d) The energy momentum tensor of a vector field is defined by Tµν = −Fµ
ρFνρ +

1
4ηµνFρσF ρσ. Compute this energy momentum tensor for the plane wave solutions
obtained in (b) and verify that it satisfies kµTµν = 0. What is the interpretation
of this last relation? [8]
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5. The oscillator expansion for a vector field Aµ in Lorentz gauge is given by

Aµ(x) =
∫

d3k̃
(
aµ(k)e−ikx + a†µ(k)eikx

)
.

(a) Show that the annihilation operators aµ(q) can be written as

aµ(q) =
∫

d3x eiqx (wqAµ(x) + i∂0Aµ(x)) ,

where q = (wq,q) and wq = |q|. [Hint: Start by performing a three-dimensional
spatial Fourier transformation on Aµ(x) and ∂0Aµ(x).] [9]

(b) Write the annihilation operators as aµ(k) =
∑3

α=0 ε
(α)
µ (k)a(α)(k) with the stan-

dard polarisation vectors ε
(α)
µ (k) which satisfy ε

(α)
µ (k)ε(β)µ(k) = ηαβ . Briefly ex-

plain the purpose of this decomposition and the physical meaning of the different
polarisations. Use the result in (a) to express a(α)†(k) for α = 1, 2 in terms of the
field operator Aµ(x) and its time derivative. [4]

(c) Consider an S-matrix element out〈f |i, (k, α)〉in with a vector particle with
momentum k and polarisation α = 1, 2 in the “in” state and i and f denoting
an arbitrary number of other particles in the “in” and “out” state, respectively.
Briefly explain (verbally) the main steps in the LSZ reduction necessary to remove
the vector particle from the “in” state. [4]

(d) Carry out the LSZ reduction discussed in (c) and thereby show that

out〈f |i, (k, α)〉in = −i
∫

d4x e−ikxε(α)
µ (k) ¤x out〈f |Aµ(x)|i〉in .

[8]
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6. A massless real scalar field φ with a cubic interaction is described by the
Lagrangian density

L = ∂µφ∂µφ +
g

6
φ3 ,

where g is a constant.

(a) By calculating the three-point Green function G(3)(z1, z2, z3) at order g and
subsequently transforming to momentum space show that the amputated three-
point function is given by

G̃(3)
amp(p1, p2, p3) = ig . [7]

(b) Consider the scattering of two incoming particles with momenta k1 and k2 into
two outgoing particles with momenta q1 and q2. By applying Feynman rules, show
that at order g2 the matrix element for this process is

M = −g2

[
1
s

+
1
t

+
1
u

]
,

where s = (k1 + k2)2, t = (k1 − q1)2 and u = (k1 − q2)2 are the Mandelstam
variables. Draw the three Feynman diagrams which correspond to the terms in
M. [8]

(c) Write the matrix element in (b) in terms of the total centre of mass energy E and
the scattering angle θ in the centre of mass frame. [6]

(d) What is the differential cross section dσ/dΩ for the above process? [4]
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7. A complete, orthonormal set of wavefunctions {ϕ`(r)} labelled by ` = 1, 2 . . . forms
a single-particle basis for a system of identical, spin-polarised fermions with coordinate
r. The operators c†` create fermions in these orbitals. The vacuum state is denoted by
|0〉 and the state |N〉 is defined by

|N〉 = c†Nc†N−1 . . . c†1|0〉 .

Explain how this state can be represented as a normalised coordinate space wavefunction
Ψ(r1, r2 . . . rN ) using a Slater determinant. [4]

The fermion annihilation operator at the point r may be written as c(r) =∑
` ϕ`(r)c`. The density operator is ρ(r) = c†(r)c(r). Show that

〈N |ρ(r)|N〉 =
N∑

n=1

|ϕn(r)|2

and that you obtain the same result by evaluating

N ×
∫

dr2 . . .drN |Ψ(r, r2, . . . rN )|2 .
[8]

Prove that

〈N |c†mc†pcqcn|N〉 =
{

δmnδpq − δmqδpn if m, p ≤ N
0 otherwise

and show that

〈N |ρ(r1)ρ(r2)|N〉 = δ(r1 − r2)〈N |ρ(r1)|N〉+
1
2

N∑

a,b=1

|ϕa(r1)ϕb(r2)− ϕb(r1)ϕa(r2)|2 .

How would these last two results differ if the particles were bosons? [13]

8. The scalar ϕ denotes the magnetisation of a uniaxial ferromagnet. In Landau
theory the free energy F (ϕ) of the ferromagnet in a field h is taken to have the form

F (ϕ) = −hϕ +
a(T )

2
ϕ2 +

u

2n
ϕ2n ,

where a(T ) is a function of temperature T and u is positive.
For the standard case of n = 2, outline the symmetry arguments leading to this

form. Assume that a(T ) = α(T−Tc), where α is a constant, and that u is independent of
temperature. Show that Landau theory describes a phase transition at the temperature
Tc and obtain the equilibrium values ϕ0 of the magnetisation at zero field in both phases.
What is the value of the order parameter exponent β within this calculation? [10]

In special circumstances a phase transition may be described by this theory, but
with an integer value n ≥ 3. How does β depend on the value of n? [4]

Find expressions at zero field for the susceptibility χ = ∂ϕ0/∂h|h=0 and the heat
capacity in both phases. [8]

Comment on your results in the limiting case of large n. [3]
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