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SECOND PUBLIC EXAMINATION

Honour School of Physics Part B: 4 Year Course

B1: I. FLOWS, FLUCTUATIONS AND COMPLEXITY

AND II. SYMMETRY AND RELATIVITY

TRINITY TERM 2011

Thursday, 23 June, 9.30 am – 12.30 pm

Answer four questions, two from each section:

Start the answer to each question in a fresh book.

At the end of the examination hand in your answers
to Section I and Section II in separate bundles.

A list of physical constants and conversion factors accompanies this paper.

The numbers in the margin indicate the weight that the Examiners expect to
assign to each part of the question.

Do NOT turn over until told that you may do so.
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Section I. ( Flows, Fluctuations and Complexity)

The Navier-Stokes equation for viscous, incompressible, fluid flow under
gravity is

∂u
∂t

+ (u · ∇)u +
1
ρ
∇p + gk = ν∇2u ,

where u is the fluid velocity, ρ the density, p the pressure, g the acceleration
due to gravity, k the vertical unit vector and ν the kinematic viscosity.

The Jacobian J of a dynamical system ẋ = f(x) is defined as Jij = ∂fi
∂xj

,
where fi and xj are the ith and jth components of f(x) and x respectively.
The trace τ of the Jacobian is equal to the sum of its eigenvalues, while the
determinant ∆ is equal to their product.
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1. Starting from the Navier-Stokes equations, derive Bernoulli’s equation for motion
along a streamline in a steady, inviscid flow,

|u|2
2

+
p

ρ
+ gz = constant ,

where z is the vertical coordinate. Provide a physical interpretation of each of the three
terms on the LHS in terms of conserved quantities in a small parcel of fluid. [4]

Show that an irrotational and incompressible flow that is independent of y can be
represented by a streamfunction ψ(x, z) satisfying Laplace’s equation:

u =
∂ψ

∂z
, w = −∂ψ

∂x
;

∂2ψ

∂x2
+

∂2ψ

∂z2
= 0 .

An inviscid, incompressible fluid flows steadily in the x-direction over a surface that
varies sinusoidally in the direction of flow, so the height of the surface is given by
zs(x, y) = a cos(πx/b), where a and b are constants. Show that the streamfunction

ψ = U0z − U0a cos
(

πx

b

)
exp

(
−πz

b

)

satisfies Laplace’s equation, corresponds to uniform flow for large z and approximately
satisfies the relevant boundary condition at the surface, which you should state, provided
b À a. Derive an expression for u at the surface. [8]

A simple model of a hydrofoil moving from right to left at speed U0 in the x-
direction through a stationary, incompressible fluid consists of a curved upper surface
whose height is given by z(x, y) = a cos(πx/b) for −b/2 < x < b/2, b À a, a flat lower
surface and infinite length in the y-direction. Assuming that the x-component of the flow
velocity relative to the hydrofoil over the upper surface is u = U0(1+(aπ/b) cos(πx/b)),
and neglecting flow in the other directions, derive an expression for the pressure on the
upper and lower surfaces of the hydrofoil, and hence an expression for the lift force per
unit length. [5]

Calculate the circulation around the hydrofoil, and state briefy the implications
for the flow away from its immediate vicinity. If a = 0.1m, b = 2.0m and the hydrofoil
is travelling through water (density ρ = 103 kgm−3 and kinematic viscosity ν = 1.5 ×
10−6 m2 s−1) at 2 m s−1, use your expression to estimate the lift force per unit length
on the hydrofoil. Is the assumption of smooth laminar flow likely to be valid in this
instance? [8]
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2. A viscous, incompressible, fluid flows steadily between two perspex plates of in-
finite horizontal extent spanning the planes z = 0 and z = b under the influence of a
constant pressure gradient, ∂p/∂x = −f . Derive an expression for u(z) for 0 ≤ z ≤ b
and state the condition on the dynamic viscosity ν for this solution to be valid. [8]

In a pasteurising process, the fluid, initially at room temperature T0, is irradiated
from below with plane-parallel ultraviolet radiation shining vertically upwards through
an aperture spanning the region 0 < x < a and −∞ < y < ∞. The incident radiant
energy flux is F0 Wm−2 in the illuminated region, at a wavelength at which the ab-
sorption coefficient of the fluid is k and there is negligible absorption in the perspex.
Starting from the Beer-Lambert law, show by considering the energy budget of a thin
horizontal slab of fluid, that the the instantaneous rate of radiative heating of the fluid,
in Wm−3, is given by

qR(z) = F0kρe−kρz

within the irradiated region. [6]

Assuming a is sufficiently small that the heating has a negligible impact on the
background flow, that the fluid has a specific heat capacity c, and that the thermal con-
ductivity and expansivity of both fluid and perspex are negligible, derive an expression
for the temperature T (z) at x = a in the body of the fluid away from the boundaries.
Explain how the processes you have neglected would cause your expression to break
down near the boundaries. [6]

If the thermal conductivity of the fluid, κ, is small but not zero (but you can still
neglect conduction through the perspex), the heating of a thin horizontal slab of fluid
due to conduction from slabs above and below it is given by

qC = κ
∂2T

∂z2
.

By comparing qC computed from your expression for T (z) at x = a with qR near the
lower boundary, assuming kρb is small enough and b/a is large enough that e−kρz ' 1
and b− z ' b in this region, find the range of values of z for which conduction plays an
important role in determining T (z) near the lower boundary. [5]
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3. Explain the meaning of the terms fixed point, unstable spiral and attractor in the
context of a phase-space description of a dynamical system. [3]

The Rössler attractor is generated by the dynamical system

ẋ = −y − z ,

ẏ = x + ay ,

ż = a + z(x− c) ,

where a and c are positive constants. Find the two fixed points of this system. [4]

Write down the Jacobian, J, of the Rössler system. Assuming that c À 1 and
a ¿ 1, and that the properties of Jacobian at the origin are representative of behaviour
near the fixed point nearest the origin, show that any perturbation in the z-direction
contracts rapidly in this region, confining trajectories near the x-y plane. Neglecting
any coupling between z and the other two dimensions, assess the stability of the fixed
point nearest the origin and sketch the projection onto the x-y plane of a trajectory
initialised near the origin. State when the confinement near the x-y plane breaks down.

[9]

Using the properties of (J+JT )/2, or otherwise, find the local Lyapunov exponents
(rates of error growth or decline) as a function of position for the Rössler system.
Show that perturbations grow exponentially in two directions, and shrink in the third
direction, provided z 6= 1. Find the orientation of the directions of fastest perturbation
growth and decline when the trajectory crosses the plane x = c assuming |z − 1| > 2a. [9]
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4. In a simplified theoretical model of muscle, each of N myosin heads attached to a
thick filament has a periodic interaction with an actin filament with period ∆. A head
can bind actin with rate constant kon(x), where x measures the position of the head
relative to the actin filament:

kon(x) = k1, 0 ≤ x < x1 < x2 ;
= 0, x1 ≤ x < ∆ ;

kon(x + m∆) = kon(x), m integer .

A bound head can unbind with rate constant koff:

koff(x) = 0, 0 ≤ x < x2 ;
= k2, x2 ≤ x < ∆ ;

koff(x + m∆) = koff(x), m integer ,

where k1 and k2 are constants. Each bound head exerts a constant force f0 driving the
thick filament in the positive x direction. If the thick filament slides at velocity u, the
probability density P (x, t) that a given head is bound to the actin filament obeys the
following reaction-diffusion equation:

∂P (x, t)
∂t

= kon(x) (1− P (x, t))− koff(x)P (x, t)− u
∂P (x, t)

∂x
.

Calculate and sketch Pss(x), the steady-state probability density, averaged over many
periods, that the head is bound, in the limit u ¿ k2(∆ − x2) and N À 1 (you may
ignore fluctuations in u). You may restrict your sketch to the interval 0 ≤ x < ∆. [10]

If, additionally, x1 ¿ x2 and u ¿ k2x2, show that the average force exerted by
each motor head is

〈f〉 ' f0
x2

∆

{
1− exp

(
−k1x1

u

)}

stating the approximations that you make. [4]

The sliding velocity of the thick filament is related to the force applied to the
muscle by an external load Fext by

Fext + N〈f〉+ γu = 0 ,

where γ is the drag coefficient of the whole filament. On a single set of axes, sketch
graphs of the drag force, γu, and of the average total force generated by all attached
myosin heads, N〈f〉, as functions of u. Calculate and indicate on this sketch the max-
imum force exerted by the muscle on the load, Fmax. Indicate by graphical construc-
tion, without calculation, the speeds of muscle contraction when Fext = 0 and when
Fext = −Fmax/2. [11]
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Section II. (Symmetry and Relativity)

5. Define the terms proper time, τ , rapidity, ρ, and proper acceleration, a0. Show
that the acceleration a of an object observed in a frame moving at speed v = βc relative
to the object in the same direction as its proper acceleration is given by

a =
a0

γ3
where γ =

1√
1− β2

.

Hence, or otherwise, show that dρ/dτ = a0/c for any object moving in a straight line
and explain briefly why this makes rapidity a useful concept. [10]

A rocket, initially at rest with rest-mass M0, propels itself by converting rest-
mass into photons at a constant fractional rate α, so dM(τ)/dτ = −αM(τ). If all these
photons are emitted rearwards, derive expressions for (a) the acceleration of the rocket
as a function of time as observed by astronauts on the rocket and (b) the speed of the
rocket relative to the launch pad as a function of time in the rest-frame of the launch
pad. [8]

A second space-craft, also of rest-mass M0 and initially at rest, is propelled by
reflecting a plane-parallel beam of photons, generated at a rate αM0 from a stationary
source mounted on the launch pad, off a perfectly reflecting mirror mounted on the rear
of the space-craft. Derive an expression for the acceleration of this second space-craft
as observed by astronauts on the space-craft as a function of its velocity relative to the
launch pad. Which space-craft would you expect to reach a distant star to which they
are travelling first? [7]

[You may assume without proof that d
dv (γv) = γ3.]
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6. A particle of rest-mass m0 and initial energy E0 decays into two particles 1 and 2
of rest-masses m1 and m2 respectively. Derive expressions for the energy and momentum
of decay product 2 in the centre-of-momentum frame and of the speed βc of this frame
relative to the laboratory. [4]

Derive an expression for the energy of particle 2 in the laboratory frame when
(a) all trajectories are parallel to the line of flight of the original particle and particle 2
is emitted in the forward direction; and (b) the trajectories of the decay products are
perpendicular to the line of flight of the original particle in the centre-of-momentum
frame. In case (b), derive an expression for the angle at which particle 2 emerges in the
laboratory frame relative to the line of flight of the original particle in terms of β and
the energy and momentum in the centre-of-momentum frame. [12]

A beam of K+ kaons, each with an energy of 8GeV, enters a detector array in
which they each decay to a µ+ muon and a νµ neutrino: you may ignore other decay
paths. Assuming the rest-mass of the neutrino is negligible, calculate the energy of the
emerging neutrinos for (a) decay parallel to and (b) decay perpendicular to the kaon
beam-line in the centre-of-momentum frame. In case (b), calculate the angle at which
neutrinos are emitted relative to the kaon beam-line. [6]

How would you expect these observations to change if the rest-mass of the νµ

neutrino were 200 keV/c2? Discuss the implications for the use of this kind of experiment
to measure the rest-mass of the neutrino. [3]
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7. A rod of length 2`, stationary in frame S, is oriented along the x-axis. Show how
the universality of the speed of light implies that the length of the rod as measured by
an observer in frame S′ moving with a speed v = βc in the x-direction relative to frame
S is given by 2`

√
1− β2. [6]

What is meant by the terms pure force and proper force? If f is a three-force in
rest frame S acting on an object that is stationary in S, derive expressions for f ′, the
three-force acting on the same object in frame S′, in the cases that (a) f is oriented in
the x-direction in S and (b) f is oriented in the y-direction in S. [8]

Suppose the rod is replaced by an ideal spring such that the proper force on the
ends of the spring is f = κ∆x, where κ is the spring constant and ∆x is the spring
extension, both observed in frame S. Using your results, or otherwise, determine the
spring constant κ′ as measured by an observer in frame S′ when the spring is (a) aligned
with and (b) orthogonal to the direction of motion. Comment on your result. [5]

Suppose the proper force is provided by electrostatic repulsion of two point charges
attached to the ends of the spring. Sketch the field lines around a point charge both
at rest and moving at a relativistic speed in the x-direction. Explain how your sketch
relates to your results concerning the behaviour of the ideal spring. [6]
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8. Define the terms four-force and four-velocity. If the four-force F a on a particle
carrying a proper charge q moving with four-velocity Ub is given by

F a = qFabUb ,

where Fab is a second-rank tensor, show that a necessary and sufficient condition that
the force does not affect the rest-mass of the particle is that the tensor Fab must be
anti-symmetric. [6]

The Faraday tensor, Fab, is given by:

Fab =




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0




Show that, if E = (Ex, Ey, Ez) and B = (Bx, By, Bz) are the electric and magnetic
fields experienced by a particle in a given reference frame, and E′ = (E′

x, E′
y, E

′
z) and

B′ = (B′
x, B′

y, B
′
z) these fields in a reference frame moving in the positive x-direction at

speed v relative to the first, then

E′
x = Ex

E′
y = a1Ey + a2Bx + a3Bz

B′
x = Bx

B′
y = a1By +

a2Ex − a3Ez

c2

and find the constants a1, a2 and a3. [9]

Show that FabFab is proportional to B2−E2/c2 and explain why you would expect
this quantity to be Lorenz invariant. [4]

A space-ship of rest-mass m0, travelling with a velocity of βc in the x-direction,
acquires a charge q from interstellar dust before entering a uniform interstellar mag-
netic field oriented in the z-direction, B = (0, 0, B). Derive an expression for electric
and magnetic field in the rest-frame of the rocket immediately after entering the field.
Hence, or otherwise, find the proper three-force on and proper acceleration of the rocket
immediately after entering the field. [6]
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