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SECOND PUBLIC EXAMINATION

Honour School of Physics Part A: 3 and 4 Year Courses

Honour School of Physics and Philosophy Part A

A1: THERMAL PHYSICS

TRINITY TERM 2011

Wednesday, 22 June, 9.30 am – 12.30 pm

Answer all of Section A and three questions from Section B.

For Section A start the answer to each question on a fresh page.
For Section B start the answer to each question in a fresh book.

A list of physical constants and conversion factors accompanies this paper.

The numbers in the margin indicate the weight that the Examiners expect to
assign to each part of the question.

Do NOT turn over until told that you may do so.
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Section A

1. An engine is operated between a body of heat capacity C1 and temperature T1

and a second body of heat capacity C2 and temperature T2, in order to extract work.
You may assume that C1 and C2 are independent of temperature and that T1 > T2.
Assume also that the engine produces the maximum possible amount of work.

Derive expressions for the final temperature Tf of the bodies and for the work
performed by the engine. [7]

2. A thin-walled container of volume 10−3m3 is evacuated to a pressure of 10−7mbar.
The vessel is surrounded by air at 1 bar and 290K. If a small hole of area 10−17m2 is
made in the wall of the container, how long does it take the pressure inside to rise to
10−6mbar?

[1 bar = 105 Pa; 1 mbar = 10−3 bar. You may assume that the mean speed of molecules

in a gas at temperature T is (8kBT/πm)1/2, where m is the molecular mass.] [8]

3. The temperature inside a house is 290K. The owner turns the central heating up
so that the temperature becomes 291K. What is the increase in the total energy of the
air inside the house following this change of temperature? [4]

4. Estimate the energy density of thermal radiation in equilibrium inside a container
whose walls are held at a temperature of 300K. [4]

5. The energy levels of a system consist of a ground state level (energy E = 0)
and a triply–degenerate excited state (energy E = ∆). Derive expressions for ⟨E⟩ and
VarE = ⟨E2⟩ − ⟨E⟩2 when in equilibrium with a reservoir at temperature T and show
how your expressions behave in the limits T → 0 and T → ∞. [9]

6. The gradient of the melting line of water on a p−T diagram close to 0 ◦C is
−1.4× 107 PaK−1. At 0 ◦C, the specific volume of water is 1.00× 10−3m3 kg−1 and of
ice is 1.09 × 10−3m3 kg−1. Using this information, deduce the latent heat of fusion of
ice, expressing your result in MJkg−1. [4]

7. The functions fn(x), where n is any non-negative integer, satisfy the differential
equation

d

dx

(
xe−x dfn

dx

)
+ ne−xfn = 0 for 0 ≤ x < ∞ .

Each fn and its derivative is bounded at x = 0 and as x → ∞. Show that, if m is a
non-negative integer not equal to n, then∫ ∞

0
e−xfn(x)fm(x) dx = 0 .

[4]
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Section B

8. In a Joule expansion, a gas in volume V1 at temperature T1 undergoes free ex-
pansion to a larger volume V2 and final temperature T2. The whole process takes place
under thermally isolated conditions. Show that in such a process the internal energy U
of the gas is conserved. [3]

Show that the Joule coefficient is(
∂T

∂V

)
U
= − 1

CV

[
T

(
∂p

∂T

)
V
− p

]
.

[5]

The equation of state for one mole of a van der Waals gas is

p+
a

V 2
=

RT

V − b
.

Derive an expression for the cooling ∆T = T1 − T2 for a van der Waals gas undergoing
a Joule expansion from volume V1 to V2. [You may assume that CV is independent of
temperature.] Consider the limits (i) a = 0, b ̸= 0 and (ii) b = 0, a ̸= 0, and discuss the
physical reasons for the value of ∆T in each case. [7]

Explain why the Joule expansion is not a practical cooling mechanism for liq-
uefying gases, and outline the principles of a gas liquefier based upon an alternative
mechanism. [5]

9. The energy E of a three-dimensional harmonic oscillator is given by

E =

(
nx +

1

2

)
h̄ω +

(
ny +

1

2

)
h̄ω +

(
nz +

1

2

)
h̄ω.

Show that the partition function Z of this system is given by Z = Z3
SHO, where

ZSHO =
e−

1
2
βh̄ω

1− e−βh̄ω
,

[5]

and β = 1/(kBT ). Show that the Helmholtz function of this oscillator is given by

F =
3

2
h̄ω + 3kBT ln(1− e−βh̄ω),

and find expressions for the entropy, the internal energy and the heat capacity. [11]

Show that the heat capacity tends to a constant value at high temperature and
show that this is in agreement with the equipartition theorem. [4]
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10. Derive an expression for the partition function of a classical gas of N spinless
indistinguishable particles of mass m in a volume V at temperature T . [5]

Show that for such a gas the entropy S is given by

S = NkB

[
α− ln

(
N

V
λ(T )3

)]
,

where α is a numerical constant and λ(T ) is a function of temperature, both of which
you should find. Use the expression for S to show that for an ideal monatomic gas
under adiabatic conditions the pressure p obeys the law

pV 5/3 = constant. [8]

Two equal volumes of ideal gases at the same temperature and pressure are mixed.
Find the entropy change (a) when the gases are identical and (b) when they are different.
Comment on your answer. [7]

11. The Fourier transform f̃(k) of the function f(x) is defined by

f̃(k) =

∫ ∞

−∞
dx e−ikx f(x).

Write down the inverse Fourier transform. Show that

(a) the Fourier transform of df/dx is ikf̃

(b) the Fourier transform of eiqx is 2πδ(k − q)

Find an expression for the Fourier transform ỹ(k) of the function y(x) = cos(qx). [10]

The thermal diffusion equation is given by

∂T

∂t
= D

∂2T

∂x2
.

By Fourier transforming this equation, show that the solution is given by

T̃ (k, t) = T̃ (k, 0)e−Dk2t,

and hence find T (x, t) for the initial condition

T (x, 0) = T0 +
∞∑

m=1

Tm cos

(
mπx

L

)
,

where Tm (m = 0, 1, 2 · · ·) are constants. Show that for t ≫ L2/D the solution is
approximately given by

T (x, t) = T0 + T1e
−Dπ2t/L2

cos

(
πx

L

)
.

[10]
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